If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2-220X+1300=0
a = 1; b = -220; c = +1300;
Δ = b2-4ac
Δ = -2202-4·1·1300
Δ = 43200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{43200}=\sqrt{14400*3}=\sqrt{14400}*\sqrt{3}=120\sqrt{3}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-220)-120\sqrt{3}}{2*1}=\frac{220-120\sqrt{3}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-220)+120\sqrt{3}}{2*1}=\frac{220+120\sqrt{3}}{2} $
| 18+3y=26+y | | y-4.1=8.7 | | 21x-6=-11 | | c–49+c–42=c+7 | | 3x+20=4x-10=5x-22 | | 42.25+7.25x=25.25+9.75x | | 20+16d=6 | | y=4.1=8.7 | | 0.5−x=−2.5 | | 1−3(3x)−7=8−4(−5x)2+6−2−3 | | 0.5−x=−2.57) | | y+4.1=8.17 | | 3/7=3x/2x-5 | | (11x-2)(6x+7)=180 | | 8(x+1)+4=3(2x–8)–16 | | (11x-2)(6x+7)+90=180 | | 2q−7=−254) | | 100+0.5p=0.25p | | −161=7(1−8n) | | 11−3y=83 | | –6(x+3)–3x=–81 | | r7−1=22) | | r7−1=22)r7−1=2 | | x+222x+23=15 | | b–49+b–46=b | | 2/x=3/1.5 | | b+31=b+b | | 4n+3(6=4n) | | -24-3x=-27 | | 2-10x=9-7x-2x | | 15+4n=21 | | 2r-12=22 |